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Abstract 

 The pulsatile motion of blood through a constricted artery has been studied theoretically. The arterial 

vessel has been assumed to be a cylindrical tube of circular cross-section and there is a non-uniform  suspension  

of viscosity of blood and a prescribed volume flux, Infinite series solutions are obtained for the distributions of 

axial velocity and pressure gradient. Effects of hematocrit and Womersley parameters on the flow have been 

discussed. A mathematical model has been developed to study the influence of externally applied magnetic field 

on the blood flow through a mammalian blood vessel with slip velocity in the wall in the presence of a stenosis. 

Using the momentum integral technique, analytical expressions for the velocity profile, pressure gradient and 

skin-friction are obtained. The condition for an adverse pressure gradient is also deduced. It is observed that the 

slip velocity as well as the magnetic field bear the potential to influence the velocity distribution of blood to a 

considerable extent and to reduce remarkably the pressure gradient as well as the skin-friction. 

 

Keywords : Blood flow, constricted artery, stenosis,hematocrit, Womersley parameter. 

 

 

Introduction. 
 

 Localised narrowing in a blood vessel iscommonly known as stenosis in medical science. Many 

cardiovasculardiseases, particularly in mammalian arteries, are closely relatedto the nature of blood movement 

and the dynamic behaviour of bloodvessel. The disease in its severe form may lead to morbidity andfatality. 

Although the exact mechanism for the development ofstenosis in the lumen of artery is not clearly known, 

various investigators [15, 16] emphasized that some of the major factorsfor the initiation and development of 

this vascular disease aredue to the formation of intravascular plagues and the impingementof ligaments and 

spurs on wall of the blood vessel. It has beenobserved that the blood flow characteristics are significantlyaltered 

in the vicinity of stenotic constrictions and manyabnormalities arise in the flow pattern. Some 

experimentalinvestigations on models of arterial stenosis have been carriedout by Young and Tsai [6] and it was 

noted that the changedcharacteristics of the blood flow may have a coupling effect onthe further development 

of the vascular disease. Various investigators [5, 8, 21] pointed out that the study ofdifferent hydrodynamic 

factors such as skin-friction and pressure under normal physiological conditions and in pathological states 

provide useful informations for better understandingof the pathogenesis and a proper treatment of 

variousarterialsdiseases like myocardial infarction, stroke etc. 
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 Different mathematical models studied by several researchers [7, 10, 14, 18, 19, 23] were 

investigatedto consider blood flow through stenosed blood vessels of whichYoung's [23] work may be 

considered as one of the earliestworks of prime importance. Lee and Fung [10] employed numericaltechniques 

to study the blood flow through astenosed tube. 

 It may be pointed out that although blood isa non-Newtonian suspension of cells in plasma, McDonald 

[11]remarked that for vessels at radius greater than 0.25 mm, blood maybe considered as a homogeneous 

Newtonian fluid. At lower shearrates blood exhibits non-Newtonian behaviour [12], but in largerarteries where 

the shear rate is high, blood may be considered as Newtonian [20]. 

 It is worthwhile to mention that most of theaforementioned studies are based on the usual assumption 

of theno-slip condition at the vessel wall. But Benneth [3], on thebasis of his in-vitro experiments to study the 

behaviour of redcells during blood flow, suggested that there might exist thepossibility of the red cells to have 

a slip-velocity at the wallunder certain conditions. Subsequently, several investigators [2, 4, 13, 15] also 

indicated the possibility of slip-velocityat the inner surface of the wall. 

 On the other hand, Barnothy [1] reportedthat biological systems, in general, are effected by 

theapplication of an external magnetic field. In a recent paper,Halder and Ghosh [9] investigated the effect of 

magnetic fieldon blood flow through an indented tube in the presence of erythrocytes. 

 In the present investigation, a mathematicalmodel has been developed to study the effect of externally 

applieduniform magnetic field on the characteristics of blood flowthroughstenosed vessels, by accounting for 

the slip velocity attheendothelium of the blood vessel. The analytical expressionsare computed numerically in 

order to quantitate of the extent towhich the slip velocity and the magnetic field can influence theblood flow 

pattern of a given stenosed blood vessel in a specificsituation. Momentum integral technique has been employed 

to solvethe problem. The effects of an external magnetic field may havesome consequences in these type of 

situations, for example, duringMRI scanning. 

 

 

 

The Stenosis Model. 

 Let us consider an axially symmetric steady,laminar flow of blood through an artery in which a mild 

stenosishas been developed and the fluid is acted on by an externallyapplied uniform magnetic field𝐵0. The 

geometry of thestenosis is shown Fig.-1 and is described as [13]. 

   
𝑅(𝑧)

𝑅0
= 1 −

𝛿

𝑅0
exp (−

𝑚2𝜖2𝑧2

𝑅0
2 )                                                          (1) 

in which R(z) is the radius of the artery in the stenosed portion;𝑅0 denotes the radius of the artery outside the 

stenosis;𝛿 and m are the height and slope of the stenosis where itinterests the vessel wall; 𝜖 =  
𝑅0

𝐿0
is therelative 

length of the stenosed portion; z represents the axialdistance and 2𝐿0 is the length of the stenosed 

segment.Stenosis geometry described by equation (1) can bewritten alternatively in the form 

   
𝑅(𝑧)

𝑅0
= 1 − 𝛼 exp (−

𝑚2𝑥2

𝑚0
2 )                                                                  (2) 

where 𝛼 =
𝛿

𝑅0
, 𝑥 =

𝑧

𝐿
,   𝑚0 =

𝐿0

𝐿
  and 2L is length of artery. 
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                                          Figure 1: Geometry of the stenosis 

 

 In biological systems and particularly incase of problems of blood flow through artery, the condition 

ofsteady flow in general may not be valid. But the consideration ofa steady laminar flowis meaningful in 

certain situations as discussed below: 

 Blood flow in large arteries is pulsatile innature, the frequency parameter 𝛽 being given by 𝛽 =

 𝑅0√
2𝜋𝑓

𝜈
, where𝑅0is the radius ofthe artery, f is the frequency of the pulsation and 𝜈  is thecoefficient of 

kinematic viscosity of blood. The flow may betreated as quasi-steady for 𝛽 > 0 in smaller arteries.McDonald 

[11] pointed out that for several blood vessels, e.g.the human femoral artery for which 2.5 <𝛽< 3.5, thequasi-

steady condition remains valid and it is also likely to bevalid in arteries much smaller than the human femoral 

artery. Itmay also be possible that such a quasi-steady flow exists in somelarger arteries due to an acquired 

constriction in a major artery [7, 5]. Thus, the assumption of steady laminar flow isjustified in that part of the 

arterial tree where the flow isnearly steady. 

 Moreover, when a stenosis develops in anartery, an immediate effect is hardening of the walls due 

tocomplex physiological changes. For this reason, the stenosedportion of the arterial wall may also be treated 

as rigid. 

 

Governing Equations. 

 Let us take theartery to be a long cylindrical tube with the axis coinciding withz-axis and the motion 

is axially symmetric. Assuming quasi-steadycondition and the azimuthal dependence because of the 

rotationalsymmetry of the stenosis, the basic equations of motion in the cylindrical co-ordinate system (r, 𝜃, z) 

are givenby. 

  𝑢
𝜕𝑢

𝜕𝑧
+ 𝑣

𝜕𝑢

𝜕𝑟
= −

1

𝜌

𝜕𝑝

𝜕𝑧
+ 𝜈 (

𝜕2𝑢

𝜕𝑟2 +
1

𝑟

𝜕𝑢

𝜕𝑟
+

𝜕2𝑢

𝜕𝑧2) −
𝜎𝐵0

2𝑢

𝜌
                                         (3) 

                   𝑢
𝜕𝑣

𝜕𝑧
+ 𝑣

𝜕𝑣

𝜕𝑟
= −

1

𝜌

𝜕𝑝

𝜕𝑧
+ 𝜈 (

𝜕2𝑣

𝜕𝑟2 +
1

𝑟

𝜕𝑣

𝜕𝑟
+

𝜕2𝑣

𝜕𝑧2 −
𝑣

𝑟2)                                          (4) 

The continuity equation is 

   
 𝜕𝑢

𝜕𝑧
+

1

𝑟

𝜕

𝜕𝑟
(𝑣𝑟) = 0                                                                                           (5) 

In the above equations, u and v represent the axial and radialvelocity components respectively;  𝜌 the density; 

p, thepressure; ν the kinematic viscosity coefficient of blood; 𝜎, the conductivity of the fluid and 𝐵0 is theapplied 

external uniform transverse magnetic field. 

 Due to the presence of the nonlinear termsrepresenting convective acceleration, an analytical solution 

ofthe above system of equations seems to be difficult and hence anattempt has been made to consider an 
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approximate solutions of the problem, by preserving theprincipal considerations regarding thestenosis 

geometry. 

 For a mild stenosis  
𝛿

𝐿0
is considerably small compared to unity and the normal stressgradient 

 𝜕2𝑢 

𝜕𝑧2  is 

negligiblecompared to the shear stress 
 𝜕2𝑢 

𝜕𝑟2 . Also if 
𝛿

𝐿0
is sufficiently smallcompared to unity, the radial variation 

of pressure, i.e.
𝜕𝑝

𝜕𝑟
 may be neglected. Thus thedifferential equations determining the flow past a mild stenosismay 

be approximated as 

  𝑢
𝜕𝑢

𝜕𝑧
+ 𝑣

𝜕𝑢

𝜕𝑟
= −

1

𝜌

𝜕𝑝

𝜕𝑧
 + 

𝜈

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑢

𝜕𝑟
) - 

𝜎𝐵0
2𝑢

𝜌
                                                      (6) 

and                           
𝜕𝑝

𝜕𝑟
= 0                                                                                                           (7) 

Now integrating equation (6) over thecross-section of the vessel and using the continuity equation(5), we obtain 

the momentum integral equation as 

  
𝜕

𝜕𝑧
∫ 𝑟𝑢2𝑑𝑟 =  − 

1

𝜌

𝑅

0

𝑅2

2

𝑑𝑝

𝑑𝑧
 + 𝝂R(

𝜕𝑢

𝜕𝑟
)

𝑟=𝑅
− (

𝜎𝐵0
2

𝜌
) ∫ 𝑟𝑢𝑑𝑟

𝑅

0
                            (8) 

where we have used the boundary conditions u = W (the velocity slip condition) and v = 0 at r = R. 

 Integrating the continuity equation (5),the volume flux Q is obtained as 

   Q = 𝜋𝑅2�̅� = 2𝜋 ∫ 𝑟𝑢𝑑𝑟
𝑅

0
                  (9) 

where 𝑈 ̅is the mean velocity at any givencross-section with radius R. 

In the present analysis, wetake the velocity constraints as 

  u = U at r = 0                (10a) 

  u = W at r = R               (10b) 

  
𝜕𝑢

𝜕𝑟
 = 0 at r = 0                (10c) 

  
𝜕2𝑢

𝜕𝑟2 = - 
2𝑈

𝑅2 at r = 0               (10d) 

and                 
𝑑𝑝

𝑑𝑧
 = 

𝜇

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑢

𝜕𝑟
) −

𝜎𝐵0
2𝑢

𝜌
  at r = R             (10e) 

In the above, the first condition defines the centre linevelocity, the second is the condition of slip velocity on 

theartery wall, the third is the regularity condition and is deducedby considering the forces on a cylindrical fluid 

element in thefollowing way :  

 If the pressure and the inertial forces are to beinfinite as the radius of the element tends to zero, the 

viscousforce that is proportional to 
𝜕𝑢

𝜕𝑟
must tend to zero. Assuming the velocity profile to be nearlyparabolic at 

the axis, as represented by the Poiseulle's profile
𝑢

�̅�
 = 1 - (

𝑟

𝑅
)

2

, the secondradial derivative of u at r = 0 may be 

approximated by the fourth condition. Finally, the fifthcondition represents the validity of equation (6) at r = R. 

 

Solutions. 

 We choose the velocity profile in thedimensionless form as 

  �̂� = 
𝑢

𝑈
 = A + B 𝜂 + C𝜂2 + D 𝜂3 + E 𝜂4               (11) 

where  𝜂 =  
𝑅−𝑟

𝑅
                              (11a) 

U being the centre line velocity and A, B, C, D, E are constantsto be determined from the velocity constraints. 

Using equations(11) and (11a) the volume flux given in (9) may bere-written as 

       Q = 2𝜋𝑅2𝑈 ∫ (1 −  𝜂)�̂�𝑑𝜂
1

0
             (11b)                      
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The velocity constraints in terms of 𝜂 are given by 

  �̂� = 1 at 𝜂 = 1                (12a) 

  �̂� = 
𝑊

𝑈
 at 𝜂 = 0               (12b) 

  
𝜕𝑢

𝜕𝜂
= 0 at 𝜂 = 1                (12c) 

  
𝜕2𝑢

𝜕𝜂2= −2 at 𝜂 = 1               (12d) 

and  

  
𝑑𝑝

𝑑𝑧
=

𝜇𝑈

𝑅2(1−𝜂)
[(1 − 𝜂)

𝜕2�̂�

𝜕𝜂2 −
𝜕𝑢

𝜕𝜂
] − 𝜎𝐵0

2𝑈�̂�at  =0                                        (12e) 

 Applying the conditions (12a) to (12e)the velocity profile  �̂�  is evaluated in the form 

𝑢 = 𝐴 +
1

7
(−𝜆 + 10 − 12𝐴)𝜂 +

1

7
(3𝜆 + 5 − 6𝐴)𝜂2 +

1

7
(−3𝜆 − 12 + 20𝐴)𝜂3 

                                                                                                    +
1

7
(𝜆 + 4 − 9𝐴)𝜂4(13)           (13) 

 In which  𝜆 =
𝑅2

µ𝑈
[

𝑑𝑝

𝑑𝑧
+ 𝜎𝐵0

2𝑊] ,      𝐴 =
𝑊

𝑈
                                                           

(14)   

From (13), it is clear that when A is known, the velocityprofile becomes a function of a single parameter 𝞴 

whichis a function of the pressure gradient 
𝑑𝑝

𝑑𝑧
 and themagnetic field strength 𝐵0. 

Substituting (13) into the equation(11b) and then integrating we obtain 

            𝑈 =
210

97

𝑄

𝜋𝑅2 +
2

97

𝑅2

𝜇

𝑑𝑝

𝑑𝑧
+

2

97

𝑅2

𝜇
𝜎𝐵0

2𝑊 −
102

97
𝑊                                     (15) 

 The parameter 𝜆 can bedetermined from the integral equation (8) as 

 λ =
4

5
(6𝐴 − 5) +

7𝑅2

5µ
σB0

2 W

U
−

14

5νU
[

∂

∂z
{U2𝑅2 ∫ (1 − 𝜂)�̂�21

0
𝑑𝜂}] 

                                                              −
14𝑅2

5𝜇
𝜎𝐵0

2 ∫ (1 − 𝜂)�̂�
1

0
𝑑𝜂                                                 (16) 

The subsequent part of the analysis will be carried out byneglecting the terms higher than two in the velocity 

profile andretaining only the Poiseuille profile [13]. 

  u = 2�̅� [1 − (
𝑟

𝑅
)

2

]                                                                                       (17) 

  �̅� = − (
𝑅2

8𝜇
)

𝑑𝑝

𝑑𝑧
                                                                                             (17a) 

is the average velocity at any given cross - section and 
𝜕𝑝

𝜕𝑧
< 0. 

 Now substituting the value of u obtainedfrom equation (17) into the momentum integral equation (8) 

wehave 

 
𝑑

𝑑𝑧
(

2

3
𝑅2�̅�2) = −

1

𝜌

𝑅2

2

𝑑𝑝

𝑑𝑧
+

ν

7
(λU − 10U + 12AU) - 

𝜎𝐵0
2𝑅2

𝜌
(−

𝜆𝑈

210
+

97𝑈

420
+

17𝐴𝑈

70
).     (18)                                                   

In this equation if we substitute �̅� =
𝑄

𝜋𝑅2
and combine the resulting equation with the (15), thepressure gradient 

is obtained in the form 

  
𝑑𝑝

𝑑𝑧
=

776

225
(

𝜌𝑄2

𝜋2𝑅2)
𝑑𝑅

𝑑𝑧
−

8𝜇𝑄

𝜋𝑅4 +
624

75

𝑊𝜇

𝑅2 +
22

75
𝜎𝐵0

2𝑊 −
97

75

𝑄

𝜋𝑅2 𝜎𝐵0
2                       (19) 

The first term on the right hand side of equation (19) is due tothe inertia of blood, the second term is due to the 

viscousshearing stress, the third term is due to the slip velocity, thefourth and fifth terms represent the influence 

of magnetic field on the pressure gradient. 

In non-dimensional form, theequation (19) is reduced to 
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(
𝑅0

𝜌�̅�0
2)

𝑑𝑝

𝑑𝑧
=

776

255
(

𝑅0

𝑅
)

5 𝑑𝑅

𝑑𝑧
−

16

𝑅𝑒
(

𝑅0

𝑅
)

4

+
1248

75

1

𝑅𝑒
(

𝑅0

𝑅
)

2

(
𝑊

𝑈0
̅̅ ̅

) 

                                             +
22

75
(

𝜎𝐵0
2

𝜌
) (

𝑊

𝑈0̅̅ ̅̅
) (

𝑅0

𝑈0̅̅ ̅̅
) −

97

75
(

𝜎𝐵0
2

𝜌
) (

𝑅0

𝑅
)

2

(
𝑅0

𝑈0
)                            (20) 

where 𝑅𝑒 =
2𝜌𝑅0�̅�0

𝜇
                                                                                                                     (20a) 

is the Reynolds number upstream from the stenosis,�̅�0 being the average velocity at a cross-section of the 

normal artery. 

 The  condition for an average pressure gradient to develop (when 
𝑑𝑝

𝑑𝑧
> 0) is 

𝑅𝑒 (
𝑅0

𝑅
)

𝑑𝑅

𝑑𝑧
≥ 4.64 − 4.82 (

𝑊

�̅�0

) (
𝑅0

𝑅
)

−2

− 0.09 (
𝜎𝐵0

2

𝜌
) (

𝑊

�̅�0

) (
𝑅0

�̅�0

) (
𝑅0

𝑅
)

−5

𝑅𝑒 

                                 + 0.38 (
𝜎𝐵0

2

𝜌
) (

𝑅0

𝑅
)

−3

(
𝑅0

�̅�0
) 𝑅𝑒                                                                      (21) 

Using equations (15) and (18), the velocity distribution u isobtained from (13) as a function of r and z in the 

form 

 
𝑢

�̅�0
= 𝑅𝑒 (

𝑅0

𝑅
)

3 𝑑𝑅

𝑑𝑧
𝑓(𝜂) + 2 (

𝑅0

𝑅
)

2
(2𝜂 − 𝜂2) +

𝑊

�̅�0
𝑔(𝜂)   

                                                   − (
𝑅0

𝑅
)

2

𝑀2 𝑊

�̅�0
𝜑(𝜂) + 𝑀2𝜑(𝜂)                             (22) 

where 𝑓(𝜂) = −0.2𝜂 + 0.76𝜂2 − 0.8𝜂3 + 0.24𝜂4(23𝑎)                                                        (23a) 

           𝑔(𝜂) = 1 − 4.16𝜂 + 2.08𝜂2 + 0.8𝜂3 − 0.6𝜂4                                                                 (23b) 

           𝜑(𝜂) = 0.15𝜂 − 0.57𝜂2 + 0.6𝜂3 − 0.2𝜂4                                     

and 𝑀 = 𝐵0𝑅0√
𝜎

𝜇
= Hartmann number                                                                                    (23d) 

The skin-friction 𝜏𝑤 is given by 

                             𝜏𝑤 = 𝜇 (
𝜕𝑢

𝜕𝑟
)

𝑟=𝑅
                                                                                                          (24) 

which in non-dimensional form is obtained with the help of (22) as 

𝜏𝑤

𝜌�̅�0
2 = 0.4 (

𝑅0

𝑅
)

4 𝑑𝑅

𝑑𝑧
−

8

𝑅𝑒
(

𝑅0

𝑅
)

3

+
8.32

𝑅𝑒
(

𝑅0

𝑅
) (

𝑊

�̅�0

) +
0.3

𝑅𝑒
(

𝑅0

𝑅
) 𝑀2 (

𝑊

�̅�0

)

−
0.3

𝑅𝑒
(

𝑅0

𝑅
) 𝑀2                                                                                                              (25) 

In the case of incipient separation for which the Reynolds numberis just enough to cause separation, the 

separation location in thediverging section of the stenosis is given by the condition that  
1

𝑅

𝑑𝑝

𝑑𝑧
 is maximum, which 

demands that 

                     𝑅 (
𝑑2𝑅

𝑑𝑧2
) = (

𝑑𝑅

𝑑𝑧
)

2

                                              (27) 

For the stenosis geometry defined by equation (1), the location
𝑧

𝐿0
 of the initial point of separation is given bythe 

relation 

  𝑒
𝑚2𝑧2

𝐿0
2

(1 −
2𝑚2𝑧2

𝐿0
2 ) =

𝛿

𝑅0

2𝑚2𝑧2

𝐿0
2                                                           (28) 

  (
𝑧

𝐿0
)

2

≈
1

4𝑚2 [√(9 − 4
𝛿

𝑅0
) − (1 + 2

𝛿

𝑅0
)]                                           (29) 
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Results and Discussions. 

 The analytical expressions derived in the previous section havebeen computed numerically for 

different Reynolds and Hartmannnumbers. The aim of the computational work is to quantify the 

influence of the magnetic field and the slip velocity at the wallon the velocity distribution. The computation has 

been carried outat the location defined by z=0.06 for three different values of 

Reynolds number Re=100, 300, 500 and Hartmann number M given by𝑀2 = 0, 9, 18. The slip velocity has been 

taken to be equalto 10% of the average velocity of blood in a normal artery[13]. The length of the stenosis has 

been taken to be 20 mmwhile the maximum depth of the stenosis is assumed to be 0.2 mm.Figures 2, 3 and 4 

illustrate the variation of thenon-dimensional axial velocity of blood flow in the stenosedarterial segment for 

different Hartmann number. It may be observedthat the magnetic field increasesthe blood velocity near the wall 

but decreases it near the central axisof the artery. Figures 5, 6 and 7 predict the same behaviour of bloodwithout 

slip velocity. The variation of blood flow with and withoutslip velocity has been shown in figure 8 for Re= 500 

and𝑀2= 9. It is noted that the slip velocity increases the flowvery near to the wall but decreases it as we pass 

on to thecentre. In figure 9, the effect of Reynolds number on the bloodvelocity has been shown and the 

influence is to reduce thevelocity with increasing Reynolds number near the wall and then toincrease. 

 

Conclusions. 

 Although the present investigation of themathematical model of blood flow through a stenosed 

segment of theartery is based on some approximations, it bears the potential toreveal some characteristics of the 

problem. The model firmlyestablishes the fact that the velocity slip at the wall of thearterial segment as well as 

the magnetic field enhance the axialvelocity of the blood. 

 

 

 
Figure 2: Variation of velocity for Re = 100 considering slip velocity. 
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Figure 3: Variation of velocity for Re = 300 considering slip velocity. 

 

 
Figure 4: Variation of velocity for Re = 600 considering slip velocity. 
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Figure 5: Variation of velocity for Re = 100 ignoring slip velocity. 

 

 

 

 

 

 
Figure 6: Variation of velocity for Re = 300 ignoring slip velocity. 
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Figure 7: Variation of velocity for Re = 600 ignoring slip velocity. 

 

 
Figure 8: Variation of velocity for Re = 600 with 𝑀2 = 9 
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Figure 9: Variation of velocity for 𝑀2 = 9and W = 0.1. 
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